Aldosterone interaction on sodium transport and chloride permeability: influence of epithelial structure.

نویسندگان

  • O Devuyst
  • V Beaujean
  • J Crabbé
چکیده

The effects of aldosterone on sodium transport and chloride permeability were investigated by electrophysiology in two structurally distinct epithelial used as models for the distal renal tubule: the A6 cell monolayer as compared with the amphibian skin epithelium (ASE). Short-circuit current (Isc) and transepithelial conductance (Gt) were measured in A6 monolayers incubated overnight with(out) aldosterone. Cell and shunt conductances (Gcell and Gsh) were also determined, as well as the conductive nature of the chloride pathway. These parameters were correlated with sodium and chloride fluxes in A6 cells (JNa and JCl) and compared with the data recorded across ASE (Bufo marinus). The existence of a cAMP-dependent chloride secretory pathway in A6 cells was also investigated upon exposition to arginine vasopressin (AVP) or oxytocin. When A6 monolayers were incubated with aldosterone, Gt significantly increased with respect to control preparations; this increase resulted solely from an increase in Gcell, and was reflected by a 3-fold increase in Isc. There was a significant relationship between Isc and Gcell, as well as between Isc and JNa in both control and aldosterone-stimulated preparations. The A6 clone used was devoid of cAMP-dependent chloride secretory activity and was unresponsive to AVP or oxytocin. Thus, comparison between ASE and A6 preparations revealed two major differences: unlike ASE, (i) aldosterone has no effect on Gsh and (ii) no conductive reabsorptive chloride pathway is operative in A6 monolayers tested. In addition, cobalt had no effect on electrical parameters of A6 monolayers. These observations show that difference in epithelial structure is reflected in terms of electrophysiological response to aldosterone, which suggests that cell heterogeneity could be a prerequisite for observing a conductive reabsorptive chloride pathway in aldosterone-responsive, sodium-transporting epithelia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pendrin regulation in mouse kidney primarily is chloride-dependent.

Recent studies indicate that pendrin, an apical Cl-/HCO3- exchanger, mediates chloride reabsorption in the connecting tubule and the cortical collecting duct and therefore is involved in extracellular fluid volume regulation. The purpose of this study was to test whether pendrin is regulated in vivo primarily by factors that are associated with changes in renal chloride transport, by aldosteron...

متن کامل

Stabilization of hypoxia inducible factor by cobalt chloride can alter renal epithelial transport

Given the importance of the transcriptional regulator hypoxia-inducible factor-1 (HIF-1) for adaptive hypoxia responses, we examined the effect of stabilized HIF-1α on renal epithelial permeability and directed sodium transport. This study was motivated by histological analysis of cystic kidneys showing increased expression levels of HIF-1α and HIF-2α We hypothesize that compression induced loc...

متن کامل

The effect of aldosterone on the accumulation of adenosine 3':5'-cyclic monophosphate in toad bladder epithelial cells in response to vasopressin and theophylline.

Vasopressin and theophylline both increase the content of adenosine 3':5'-cyclic monophosphate (cAMP) in epithelial cells of the urinary bladder of toads (Bufo marinus). Incubation of the tissue with 0.2 muM aldosterone markedly increases this response to the two agents; incubation for a similar time without steroid reduces the response. The permeability responses (sodium transport and water fl...

متن کامل

Differential effects of extracellular ATP on chloride transport in cortical collecting duct cells.

Extracellular ATP in the cortical collecting duct can inhibit epithelial sodium channels (ENaC) but also stimulate calcium-activated chloride channels (CACC). The relationship between ATP-mediated regulation of ENaC and CACC activity in cortical collecting duct cells has not been clearly defined. We used the mpkCCD(c14) cortical collecting duct cell line to determine effects of ATP on sodium (N...

متن کامل

CYP3A5 and ABCB1 genes influence blood pressure and response to treatment, and their effect is modified by salt.

The permeability-glycoprotein efflux-transporter encoded by the multidrug resistance 1 (ABCB1) gene and the cytochromes P450 3A4/5 encoded by the CYP3A4/5 genes are known to interact in the transport and metabolism of many drugs. Recent data have shown that the CYP3A5 genotypes influence blood pressure and that permeability-glycoprotein activity might influence the activity of the renin-angiote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1235 2  شماره 

صفحات  -

تاریخ انتشار 1995